
DcBDO rV'ScIMFNTATION PAGE' It 400o
-~ ~ OUR No. 0704-O61"

IItI II II i" IIIIt~l ~l DATE I. REPORT TYEADDATE$ COvERED-
August 1991 Ifinal report 30Aug88-28Sep90

4. TITLE AND SUBTITLE L FUNDING NUMBERS E- .MO

Mathematical Theory of Computation C: N00039-0'4-C-021.1

T: 20

4AUTHOR(S)

John McCarthy

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) I. PERFORMING ORGANIZATION
REPORT NUMBER

Computer Science Department
Stanford University
Stanford, CA 94305

9. SPONSORIG OIOIGAEC AES N DRS(S 10. SPONSO~jiNG / MONITORING
sponsorng agency: Monitrng agency: AGENCY REPORT NUMBER
SPAWAR 3241C2 ONR Resident Representative
Space & Naval Warfare Systems Mr. Paul Biddle

Command Stanford Univ., 202 McCullough
Washington, D.C. 20363-5100 Stanford, CA 94305

ii. supPLEMENTARY NOTES

Ila. OtSTRIEUTION/AVAILA(IITY STATEMINT 12. DISTRIBUTION cooE

Approved for public release: distribution unlimited.

13. ABSTRACT (Mdximum2O0worto)

See attached report. k~' I

AUG 1319 i~

91-07580

14. SUBJ1410 TERMAS Is. NUMBER OF PAGES
6

16. PRICE coot

17. SECURITY CLASSIfiCATI ON ISECURITY CLASSIFICATION 1t. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF RipoRT? OF THIS PAGE Of O BTRC

N$N ULG~.2O5~ ULTRC U .v

Best
Available

Copy

Sponsored by

Defense Advanced Research Projects Agency (DoD)
3701 North Fairfax Drive
Arlington, VA 22203-1714

"Mathematical Theory of Computation"

ARPA Order No. 6J16

Issued by Space and Naval Warfare Systems Command

Under Contract No. N00039-84-C-0211, Task 20

"The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government."

,

I -L

-i -j

Final Report for Task 20 of Contract N00039-84-C-0211

Programming and Proving

with higher order abstractions and reflection

Project Summary

This project was concerned with the development of correct and reusable software
through the use of higher order abstractions (function, control, assignment, process) and
reflection. A semantic framework for these notions will be the basis of an experimental
system for manipulating and reasoning about programs.

The goals of this project were the development of logical formalisms for reasoning
about programs that use abstractions and reflection, and the application of these theoretical
results to selected software problems. Example applications include (1) clarification of
existing programming paradigms, (2) analysis of existing and proposed languages used
in the DARPA community for specifying, writing, and transforming programs, and (3)
development and implementation of tools for computer aided reasoning about and operating
on programs.

The accomplishments of this project fit into four categories:

* logics for reasoning about function and control abstractions;

* logics for reasoning about data mutation;

e logics for reasoning about function and control abstractions in the presence of mutable
data;

* applying methodology for reasoning about programs to the mechanical verification of
hardware.

1. Logics for Function and Control Abstractions

The results of this research are describe in detail in the publications [15, 16].

The first of these, [15], is based on lectures given at the Western Institute of Computer
Science summer program, 31 July - 1 August 1986. Here we focus on programming and
proving with function and control abstractions and present a variety of example programs,
properties, and techniques for proving these properties. Examples include such powerful
programming tools such as functions as values, streams, aspects of object oriented program-
mitig, escape mechanisms, and coroutines. We begin with an intensional semantic theory
of function and control abstractions as computation primitives. A first order theory of
program equivalence based on this semantics is developed and used to formalize and prove
extensional properties of programs. In addition a method is developed for transforming
intensional properties of programs into extensional properties of related programs called
derived programs. Application of this method to formalize and prove intensional properties
of programs.

In the second, [16], a theory IOCC (Impredicative theory of Operations, Control, and
Classes) is presented. This paper represents the initial stage of a project to develop a wide

2

spectrum formalism which will support not only reasoning about program equivalence, but
also specification of programs and data types, reasoning about properties of computations,
operations on programs, and operations on program specifications. IOCC is a variant of
Feferman's theories of operations and classes [5, 6, 7] and is most closely related to IOC ,
(without the ontology axiom) [7]. The main difference being our choice of basic constants
and axioms for equivalence. Program primitives include functional application and abstrac-
tion, conditional, numbers, pairing, escape, and continuation capture and resumption. The
theory of equivalence is based on the semantic model presented in [15]. In [16] we have
simplified the notation, refined the axioms, and eliminated the dependence on certain ex-
tensionality axioms which are valid in the model of [15], but fail in the presence of memory
effects. In addition, the paper demonstrates that rigorous, but informal reasoning such as
appears in [15] can be carried out naturally within a Feferman style theory. The theory
of classes is just that of [6, 7]. What is new here, beyond a few class constants specific to
our programming language, is the application to reasoning about control abstractions, and
the use of maximum fixed-point constructions for reasoning about streams and coroutines.
Examples are given for introduction of escape mechanisms into programs by transformation,
and for specifying streams and coroutines.

The call-by-value lambda calculus lies at heart of most programming languages. For
these languages tools such as compilers, partial evaluators, and other transformation systems
often make use of rewriting systems that incorporate some form of beta reduction. For
purposes of automatic rewriting it is important to develop extensions of beta-value reduction
and to develop methods for guaranteeing termination. In [8] we describe a simplifier for
such languages based on the applicative axioms of the theory IOCC. The main innovations
are (1) the use of rearrangement rules in combination with beta-value conversion to increase
the power of the rewriting system and (2) the definition of a non-standard interpretation of
expressions, the generates relation, as a basis for developing terminating strategies.

2. Logics for Data Mutation

The main accomplishment in this area was the development of a syntactic approach
to semantics. This new approach was the key insight needed to establish the completeness
of an inference system for reasoning about data mutation. The results of this research are
describe in detail in the publications [10, 11].

In [11] this paper we study the constrained equivalence of programs with effects. In
particular, we present a formal system for deriving such equivalences. Constrained equiv-
alence is defined via a model theoretic characterization of operational, or observational,
equivalence called strong isomorphism. Two expressions are strongly isomorphic if in an
memory states they return the same value, and have the same effect on memory (modulo
the production of garbage). Strong isomorphism implies operational equivalence. The con-
verse is true for first-order languages; it is false for full higher-order languages. Since strong
isomorphism is defined by quantifying over memory states, rather than program contexts,
it is a simple matter to restrict this equivalence to those memory states which satisfy a set
of constraints. It is for this reason that strong isomorphism is a useful relation, even in the
higher-order case.

The formal system we present defines a single-conclusion consequence relation between
finite sets of constraints and assertions. The assertions we consider are of the following two

3

forms: (i) an expression fails to return a value, (ii) two expressions are strongly isomorphic.
In this paper we focus on the first-order fragment of a Scheme- or Lisp-like language, with
data operations 'atom' 'eq' 'car', 'cdr', 'cons', 'setcar', 'setcdr', the control primitives 'let'
and 'if', and recursive definition of function symbols. A constraint is an atomic or negated
atomic formula in the first-order language consisting of equality, the unary function symbols
'car' and 'cdr', the unary relation 'cell', and constants from the set of atoms. Constraints
have the natural first-order interpretation.

Although the formal system is computationally adequate, even for expressions con-
taining recursively defined functions, it is inadequate for proving properties of recursively
defined functions. We show how to enrich the formal system by addition of induction
principles. To illustrate the use of the formal system, we give three non-trivial examples
of conqtrained equivalence assertions of well known list-processing programs. We also es-
tablish several metatheoretic properties of constrained equivalence and the formal system,
including soundness, completeness, and a comparison of the equivalence relations on various
fragments.

3. Higher-order Abstractions in the Presence of Mutable Data

Reasoning about programs in languages with both higher-order abstractions and mu-
table data presents problems not present when treating these features separately. The
key result in solving these problems was a simple characterization of operational program
equivalence in this language. This results of this research are reported in [9, 13, 14, 12]

The key methods developed in [9] consisted in establishing program equivalence by
computation induction based on our simple characterization of operational equivalence.
Progress has been made in finding a small collection of rules that comprise the main uses of
computation induction and to develop further syntactic methods for conditional reasoning.
In [13] we describe a simulation induction principle that can be used to establish equiva-
lence of higher-order objects with mutable local store. In [12] progress towards a theory
of program development by systematic refinement is described. Here a formal system for
propagating constraints into program contexts is presented. In this system, it is possible
to place expressions equivalent under some non-empty set of constraints into a program
context and preserve equivalence provided that the constraints propagate into that context.
Constrained equivalence and constraint propagation provide a basis for systematic devel-
opment of program transformation rules. Three key rules are: subgoal ind.rtion, recursion
induction, and the peephole rule.

In [17] we take a look at partial evaluation from the point of 'sew of symbolic com-
putation systems, point out some challenging new applications for partial evaluation in
such systems, and outline some criteria for a theory of partial evaluation. The key features
of symbolic computation systems are summarized along with work on semantics of such
systems which will hopefully aid in meeting the challeng,. The new applications are il-
lustrated by an example using on the concept of comprwient configuration. This is a new
idea for software development, based on the use of higher-order and reflective computation
mechanisms, that generalizes such ideas as module,. classes, and programming in the large.
In [14] we report progress in development of methods for reasoning about the equivalence
of objects with memory and the use of these methods to describe sound operations on such
objects, in terms of formal program tranformations. This work combines the methods

4

developed in [13, 11, 12] and meets some of the foundational challenges implicit in [17].
Three different aspects of objects are formalized: their specification, their behavior, and
their canonical representative. Formal connections among these aspects provide methods
for optimization and reasoning about systems of objects. To illustrate these ideas a for-
mal derivation of an optimized specialized window editor from generic specifications of its
components is given. Components, or objects, are self-contained entities with local state.
The local state of arL object can only be changed by action of that object in response to
a message. In our framework objects are represented as functions (closures) with mutable
data boupd to local variables. The techniques for reasoning about objects include: rules for
establishing equivalence under a set of constraints; symbolic evaluation with respect to a set
of constraints; propagation of constraints into program contexts; the method of simulation
induction, used to establish the equivalence of objects. The key new result presented in
this paper is the (abstractable) theorem. This result enables one to make use of symbolic
evaluation to establish the equivalence of objects. In the current state of development the
framework treats only sequential computation. However, the techniques such as simulation
induction and constraint propagation, have been designed with the goal in mind of treating
objects which exist in and communicate with other objects in an open distributed system.

For the transformational approach we focused on methods for proving equivalence of
definitions, as well as establishing invariants (partial correctness statements) needed to prove
equivalence. For this purpose subgoal induction and recursion induction are appropriate.
Treatment of total correctness requires the formulation of principles for induction on well-
founded orderings. Examples of structural induction principles extended to the case of
computations with effects are given in [11] and additional principles have been formulated
to treat cases where the measure that is being decreased is not a simple structural property,
but decreases due the effect that is produced by the computation.

Recently we have extended the equational theory to fully quantified modal language.
This incorporates both constrained equivalence and constraint propagation into a single
uniform language. Work is in progress to further extend the language to a Feferman style
theory of operations and classes [5, 6, 7]. This extends the work of [16] and will provide
a rich language for defining constraints and basis for studying types and equivalence in a
uniform framework.

4. Mechanical verification

Hardware verification is an important application area for mechanical theorem prov-
ing. In this research the basic approach was to treat circuit descriptions as programs and
apply methods of the above programming language theory to develop a formal semantics
(interpreting circuits as computing functions on finite strings). The semantic theory was
mechanized in the Boyer-Moore logic and a variety of circuit properties were mechanically
checked. Viewed as programs, circuits often quite simple and mechanical verification of
functional properties seems quite feasible. The methods developed in this work for carrying
out the mechanization will provide further basic tools for mechanical verification of program
components. The results of this research are reported in [2, 4, 3, 1].

In [2, 1] a new functional semantics is proposed for synchronous circuits, as a basis
for reasoning formally about that class of hardware systems. Technically, we define an
extensional semantics with monotonic length-preserving functions on finite strings, and an

5

intensional semantics based on functionals on those functions. As support for the semantics,
we prove the equivalence of the extensional semantics with a simple operational semantics,
as well as a characterization of th circuits which obey the "every loop is clocked" design rule.
Also we develop the foundations in complete detail, both to increase confidence in the theory,
and as a prerequisite to its mechanization. The theory has been implemented in the Boyer-
Moore theorem prover [1]. A sequence of synchronous circuits of increasing "sequential
complexity" proposed by Paillet were mechanically verified using this implementation of
the theory [4, 1]. Several notions of correctness for pipelined designs were formalized and
correctness of pipelined synchronous circuits, including in the the Saxe-Leiserson retimed
correlator, a pipelined ripple adder, and an abstract pipelined CPU were also verified [3, 1].

5. References

[1] Alexandre Bronstein. MLP: String-Functional Semantics and Boyer-Moore Mecha-
nization for the Formal Verification of Synchronous Circuits. PhD thesis, Stanford
University, 1989.

[2] Alexandre Bronstein and Carolyn Talcott. String-functional semantics for formal ver-
ification of synchronous circuits. Technical Report STAN-CS-88-1210, Department of
Computer Science, Stanford University, 1988.

[3] Alexandre Bronstein and Carolyn Talcott. Formal verification of pipelines based on
string-functional semantics. In IFIP 1989 workshop on applied formal methods for
correct VLSI design, 1989.

[4] Alexandre Bronstein and Carolyn Talcott. Formal verification of synchronous circuits
based on string-functional semantics: The 7 paillet circuits in boyer-moore. In C-
Cube Workshop on Automatic Verification Methods for Finite State Systems, Grenoble,
France, June 1989, 1989.

[5] S. Feferman. Constructive theories of functions and classes. In Logic Colloquium '78.
North-Holland, 1979.

[6] S. Feferman. A theory of variable types. Revista Colombiana de Matimaticas, 19, 1985.

[7] S. Feferman. Polymorphic typed lambda-calculi in a type-free axiomatic framework. In
Logic and Computation, volume 104 of Contemporary Mathematics. A.M.S., Providence
R. I., 1990.

[8] L. Galbiati and C. Talcott. A simplifier for untyped lambda expressions. In CTRS9O,
1990. to appear as LNCS volume, full version Stanford University Computer Science
Department Report STAN-CS-90-1337.

[9] 1. A. Mason and C. L. Talcott. Programming, transforming, and proving with func-
tion abstractions and memories. In Proceedings of the 16th EATCS Colloquium on
Automata, Languages, and Programming, Stresa, volume 372 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1989.

[10] I. A. Mason and C. L. Talcott. A sound and complete axiomatization of operational
equivalence between programs with memory. Technical Report STAN-CS-89-1250,
Department of Computer Science, Stanford University, 1989.

6

[111 I. A. Mason and C. L. Talcott. Inferring the equivalence of (first-order) functional
programs that mutate data. Theoretical Computer Science, to appear, 199?

[12] I. A. Mason and C. L. Talcott. Program transformation via constraint propagation,
1990. to appear.

[13] 1. A. Mason and C. L. Tacott. Equivalence in functional languages with effects. Journal
of Functional Programming, to appear, 1991.

[14] I. A. Mason and C. L. Talcott. Program transformation for configuring components. In
Symposium on Partial Evaluation and Mixed Computation, PEPM'91, pages 297-308.
ACM, 1991.

[15] C. L. Talcott. Programming and proving function and control abstractions. Technical
Report STAN-CS-89-1288, Stanford University Computer Science Department, 1989.

[16] C. L. Talcott. A theory for program and data specification. In Design and Implemen-
tation of Symbolic Computation Systems, DISCO'90, volume 429 of Lecture Notes in
Computer Science. Springer-Verlag, 1990. full version to appear in Theoretical Com-
puter Science.

[17] C. L. Talcott and R. W. Weyhrauch. Partial evaluation, higher-order abstractions, and
reflection principles as system building tools. In D. Bjorner, A. P. Erschov, and N. D.
Jones, editors, Partial Evaluation and Mixed Computation. North-Holland, 1988.

